paper read before the Canadian Society of Civil Engineers at their meeting of the 26th- Nas 1887

During a professional career of now nearly 40 yearz, I have had to design, estimate and superintend the construction of very many building* of all kinds, small and lar,e : dwelling honses, churches and preslyteries, the Laval University, collhyes, convents, asylums, hospitals, hotels, schorls, theaties, manufactories, \&c.; and engaged as I hive b pen on hundreds of arbitration cases relating to defects of cunstruction, in various structures, or in the settlement of untold accounts for extras arising olit of faults of omissiou and commission on part of architects and so called engineers and others; have had abmendant opportunity to notice the great and mupardonable ignorance displayed in scores of instances, of the simplest rules of th.e coustruetive art.

A paper of this nature would no donbt be more apropos if. read before and to be discussed by a sociely of architects in lieu of oue of the engineering profession; but no definite line can well be drawn between the two, and much of what I have to say may be considered common property; fur, while the architect often has to be something of an engineer wheu dealing with foundations built in water; the engineer must also often trench upon the domain of ths arehiteci in the erection of k 'lges and viaduets and in such architectural stractures as manufactories and mills, promp and engine houses for water works and other purposes, light houses, grain and other elevators, stores for dockage purposes, railway station buildings and the like.

Hence nq apology, I presume, need be offered for my dealing with this subject in presence of an assenblage of inen who, like the nembers of the association of Civil Eugineers of Canada, nust be often called on to design and erect structures where not only have they to be acquainted with the ordinary and essential rules of construction, but in many cases also of distributive and orna-mental architeeture; and I hope ouly to say enongh to persuade our legislators of the federal and local parliaments of the absolute necessity, at this stage of the growth and progress of Canada, of the creation of one or more schools of art akin to those of Kensington in London, or to those of St. Cyr, Aix aud Angers, in France; where the rising generation of engineers and architects may study and make themselves acquainted with all that is essential to an intelligent appreciation of the necessity of being guided in constructions of all sorts by the well known rules which should be followed out to prevent disaster and the waste of public money, as of private fortunes, in the construction of works which are either totaly unsuited to the purposes intended, as is the case with the new harbour works at Quebec, or where the cost incurred has to be incurred again to rectify errors of an engineering or architectural nature.

The Levis graving is dock a case in point, where from not having had the precaution to bore and ascertain the true nature of the foundation on which the structure was to rest, the caisson gate has had to be moved inland by not less than 65 ft ., the dock curtailed by that much in its length; and, due to which error, a work undertakeu to be buill and completed for less than half a million of dollars, now costs close upon double the amount ; a single dam, for mere temporary purposes arising out of the unpardonable etror of the english engineers employed by the harbour commissioners to design and carry out the work, having cost not less than $\$ 118,000.00$.

Is there anything more usual for instance, with a large number of our would be architects and builders than to be totally ignorant of the fact that the strength of a joist or horizontally placed beam is in direct ratio to the square of its depth and indirectly or in the inverse ratio of its length. Do they even know the meaning of these terms; or would they not in so many thousands of existing cases, instead of adding to the breadth or thickness of the beam (because it requires no tuition to uuderstand that) have, in lieu of so doing, increased its depth by only a fraction of the whole ; for, while to double the strength of the beam, its depth remaining the same, the breadth must be doubled, the same increment of resistance is added to it by increasing its depth by oniy 4 tenths thereof or little more than a third of its vertical height. To treble the strength, the advantage gained is even more marked; as in such case it suffices to add, not the double of 4 tenths but little over 7 tenths- 73 per cent; and to quadruple the strength, the depth only has to he doubled, so that a $3^{\prime \prime} \times 17^{\prime \prime}$ joist for instance is as strong as cne of $6^{\prime \prime} \times 12^{\prime \prime}$ or as two of 3 " $\times 12^{\prime \prime}$ while the increased quantity of timber is but 40 per cent in the one case against $100{ }^{\circ} 7^{\circ}$ in the other; and a $3 " \times 15^{\prime \prime}$ joist, while only 250° more in its cubic contents or board measure, will be 50 o ${ }^{\circ}$ stronger than the $3^{\prime \prime} \times 12^{\prime \prime}$ timber.

Had this rule been acted on in the past, how many thousands of dollars worth of timber would there not have been saved in the aggregate and each and every one have benefited thereby.

Of course there is a practical limit to thus adding to the height of beam to inerease the strength; ${ }^{\text {as, }}$, in the case of timber, the deeper beam must be cut from a larger and more expensive \log, and if very deep, herring bone bridging must be employed or intermediate strutting, to preserve the verticality of the beam and ensure its not giving laterally. The depth of floors must not be inde-
finitely increased, the height hetween floors diminished by so much, or the total elevation of the structure added to in a manner to make it more costly or of ungainly aspect.

Again, how often have I not been shocked, on entering even new or comparatively new buildings : dwelling honses by the hundred, stores and factories, and even $\boldsymbol{j}^{\text {ublic }}$ luildings; where all the thoors were on the slant towards the centre of the building; all the doors, more especially in partitions runuing from froat to rear-less so in the narrower direction tet wen the gable ends or p हrty wals, -on the skew ; partly from bring furced ont of the rectangular, partly firm having to be !astd off ly the joiner from time to time, to canse them to ṣint and fit their jambs or frames; the furniture of cutase following suit, with tables on which a round ruler or pencil conld not be placed without rolling off; the plastering erabikd and broken from the settlement, and the whole defect rendered dorbly sensible and more intolerable to the eye ly its being thrnst on the spetaator in the evidently inclined lines to which the paperings or tapestry were cut to conform to the unhorizonal lines of cornices and skirtings.

The first, the extra cost of leams is a defeet only of a peenniary niture so to say and being hidden beneath the flours is soon and eaisily forgotten; but not so this, which to a sen-itive and appreciative eye can not but be a lastung and continuous source of bodily inconvenience and mental agony.

And all this due to what? to sheer ignor.mee of the fact thet of thee points of support, the centre one bears donble the weight of enher of the others when placel half way between thear.

Now not only are the division walls of thonisands of buildings, not stronger in proportion to the outer walls, as they should be; but they are on the contrary unt half so thick or strong, and worse than all, what do we find in most tenement houses, b it a mere parition of light wooden stids and lath and plaster with sometimes not even a fomblation wall in or below he bisement floor fir this partition to rest ou, or if there be one the chances are that it is unt even on an myielding foundation ; and thus, between the sinking into the soil, the crushing of the sulprposed horizontal timbers between the tiers of studs, due to weight of structure and to shrinkige from drying or desiccation, amomuting to as much as an inch or more in each story; the settlement oceurs which I have allndeit tr, and either hundreds or thonsands have to be expended in rectifying this error of emstruction often due to the parsimoniousness and ignorance of the proprietor himself, and in total disregard for the advice of his architect or builder; or the structure remains a crying disgrace and reproach to all concerned in its erection and a source of every day discomfirt and toment, as every thing unaesthetical generally is to all preople of fine and cultivated feelings.

But there has also to be guarled against the sagging of a floor between the two or four walls ; and to this purpose it often suffices to remember thait every joist, as far as possible, or at la ast every second or alternate one should stretch right through the structure from front to rear and so rest ou all three the walls, the ceure one as well as the two outer ; that is, on three priuts of support.

The strength of a joist is thus doubled and its tendency to sag at the ceutre of the vacant space reduced by 50 per cent ; its stiffiess, as already said, heing in the inverse ratio of its length; nor must it be forgotten that when no more thant two points of support can be bad, or the beam not long enough to reach the full depth, then may its rigidity be increased $25^{\circ}{ }_{2}$ 。 by thoronghly sealing it at one end in the wall and by not less than 50%, when similarly sealed at bath ends; not furgetting neither, that whatever weight the beam will bear at its ceutre, it will bear twice the weight when uniformly distributed throughout its length.

My advice, is Gentlemen : design the thing as it sloould be, and so specify the work; and let the paper writing there remain, as well the plans and sections, to show and prove that you proposed what you considered right and essential ; and then leave it to the proprietor, if so be should elect, to cutand curtail as he may please, to thin out the walls for sake of false economy, shorten the joists or reduce their height.

I have had examples of this more than once in my own practice. When not much more than a boy, just out of indentures, I was called on to desigu the plans for the parish church of Beauport, near Quebec. Eacb of the towers I planned to have 4 walls: in faet to make towers of them from below to the base of the spire, the steeples reaching as they do to a height of over 200 ft . The church wardens in their economical wisdom decided on leaving out the two inner walis of each of the tovere, and supporting the corresponding sides of the spires on a siugle angle pillar or rather post of timber.

The consequence is that both the steeples settled towards each other and towards the building and that being thereafter cilled on by a then new curate and new set of wardens to rectify the erior ; I was reproached with not having at the outset properly designed the structure, until the very plans I had prepared some 20 yearis before were produced by me to show that not I was at fault, but the parishioners themselves in the wroug.

Nothing is more difficult ior instance than to get a proprietor or even a municipality represented in its city council by illiterate men, to allow an engineer or architect to build a retaining wall of sufficient strength, sufficiently thick at bottom to hold out as it should do for its natural life against the horizoutal thrust und overturning tendency of the material behiud it, often so liquid, so fluid I'should suy, when conposed of quick sand or of water diluted earth, as to have to be assimilated in stress to that of water pressure fur purposes of calculation.

I have not always been faultness myself in this respect, wishing to economise the straightened meals of such a poverty stricken place as oll Quebec; but have long found out that it is all false ecoulmy and that far better be it to design and build any such wall of a greater rather than a less thickuess, than be taunted with and thereafter made to feel keenly the justness of the reproach of not having done so and see the structure giving way little by little towards the open, first gradually lousing its tratter, if any, reaching the vertical and then in course of tine leaning forward and tinally in from 10 to 20 years threatening destruction, when its natural life should have been at least a hundred years or more if kept iu proper repair. But retaining walls will do this, due to others causes to be guarded agtinst and uu tratter how thick they b: and well adapted to sustain and resist the thrust: I mean frobin the effecels of frost when not filled in in the rear with permeable material, as they should invanably be, to allow surface or other waters to pass off throngh weepers below to the street level.

There are other defects to be guarded ag inst, as the bulging out of walls of certain structures, liy the stress of vaults and arches where nut c,mmeracted either by a proper thi kness of wall or by the strengthening thereof by buttresser, or luading fivin above by adung to the height, or applying iron ties to comatract the spreading tendency; to say nothing of the very bad cffect of the appearance of a comer pier of any building when is. is often the case it is :nade narrower than the intermediate ones betweeu the openug; ; as when in an isolated dwelling honse or other building, a narrow passage way along the gabee of the same ihrows the door so close to the end as barely to leave nure between it and the angle than the mete thicknes; of the wall itself, a defect which should not be tolerated, but the dour shifted firther from the end even at the expense of widening the passage, trenching on the room aljoining or the less olyectionable mode of encroaching a hittle on the front portion of the rom and hiding the defeet from the insiue by an angular or quadrantal projection wihin the apartment.

Geutlemen, there is in our human nature an element of aestheticistn. Certain proportions seam to be innate in our minds, and uxisting there, irrespective of any twition of the beautiful, they are so to say engraven on the retiua of the eye and thus rendered indissoluble. Likely this is due to the ratios in the humau s.ature. Yon can nolice this when ever an illiterate man or child will say that such and such a thing does not plase him, as for instance when a building is top heavy: that it looks like a man whose head rests alnost on his shoulders wathout the interposition of a neck.

We all appreciate the true proportions of a human being, inan or child or woman. One is said to be too bulky for his helght, too short, too stumpy, another too tall and slight. We do not like, we can not bear to see a waist half way down the boty, of which th: normal height is at say two thirds, from the ground or floor we stand on.

Our clue is taken from this, it is implanted in us by the creator and hence it is I beleive that without kowing why, no one almost there is but who distikes to see a column fo: instance cut or divided through the centie, or its middle poiuter at by an abuttuing cornice, or plinth course, or by the hrad or transow of a door or gate way or by the impost of an arched opening or by a nich of which either the top or bottom comes opposite the centre. On the contrary if auy such adjoining feature cuts the colnmn or abuts againts it at just two thirds the height from base one feels satisfied that the right proportions are observed.

Why are the fillets in the flntings of a column made just one third the height of shaft. Try them at $\frac{1}{2}$ the height and some how or other you will not feel satisfied. Put two such columns side by side, one of which the flutes are tilled in to half, the other to one third the height and even the untutored eye will select the latter.

Have yon ever seen a spire where if the height of angle minarets do vary by less than the two thirds from the total height of structure, it is pleasing to the eye. No, the pinnacle must be one third the height of steeple or thereabout and any attempt to alter it materially is destructive of the efiect.

In this way also or due to the same sense, the same innate aestheticism of our human nature, can we account I beleive for the fact that a basement floor should be, some two thirds of the joint height of the two stories over it and an attic story two thirds only of the story which it crowns; the attic window also, I do not here allude of course to the dormer nr so called attic window in a roof so much as to what is called in classic architecture an attic, that is the upper portion or story of the front elevation of a building; I say an attie window also or that in a regular attic story is looked for as baving to be not one half or one third the height of the windows in the regular stories below it; but almost invariably some two thirds thereof to be unoffending, agreeable to the eye.

A door must also be in some way proportionate to the human frame when properly attired, as of a woman with her skirts, say in height from two and a half to three times its width and never its width anything like equal to its height.

A room is not satisfactory, it will please no one, not even those who are incapable of knowing why or of giving expression to their dislike unless its length does bear a certain proportion to its breadth as that of 3 to 2 for instance and the height must bear about the same ratio to the breadth to be agreeable, as 10 to 12 ft . for a 15 ft . room, 20 ft . for a 30 ft . room and so on in proportion.

We have a sad example of this want of relationship in our now parliament buildings Quebec where the rooms on either side the coiridor are but 15 ft . in depth from froint to rear, so that the windows being say at 10 ft . centres and when three or more of them are thrown into one arartment or to speak more correctly, the apartment made to include that many openings, this making the room some 30 to 40 ft . or more in length, which it must neeils be tor many purpnses, among others for the architeets and engineers departmeats and crown lands where lengthly space is required for draughtsmens' tables, and the extension of large sized maps, the 10 um becones a mere git ; whereas, had the depth of building been fixed at 60 ft . instead of 50 which it should have been; then could the roons, on either side a 10 ft . corrilor, h. ve huen amarded a breadth of 20 ft . each instead of 15 , the remain ing 10 ft . being ample for outer an tinner walls.

Gentlemen it is, believe me, in no spirit of falt fimling that I: allude to these defees of construction, distribution, ilecoration; but it behovrs us to edncate our yourh up to a true atesth tic sentiment, a true aprreciation of what is proper ; and in th: sune way as I am n w pointing out defects in buidings die to ohers than myself, so would 1 att all times be ready to adinit the coureetness of any such erticism where I have been concerned.

Our new post-office is by general consent deemed to -havay ; that is, there is too much masonry, too great a height of wall above the undully shortened wintows of the attic story; and the contrary defect obians to some extent in our new court house: where there is too little masonry in proportion to the number and size of opening; which had they all been curtailed by just on f,ot in height, would have restorted the desired ratio "le rapproft entre les pleius et les vides" as they say in French, and may be the mezzanine openings under the roof hid thetter hive been onitted or if neeessary for light aud vemilatiou, hidden or again as the more characteristic french exprestion has it "dissimnlés" behind some ornamental iron scroll work in imitation of the seulptured frieze of an entablature.

If I allude only to buildings in Quebec and do not reach to Montreal or elsewhere for comparison, it is' not that there may not be structures in Montreal or other Canadian or American cities, where something may be found to critiese as for instunce in the proportions both ,ntward and inward of your Nore-Dame Cathedral or of the stumpy structine adjoining the beautifal grecian portioo of the Montreal Bank; but because I have not the building; as I have those of quebec in my minds eye, and I think gentlemen, no better paper eomld be writt n by any one of yon, none invited or salicited fiom your eity architeets of more realistic value to the youth of your elty than a paper like this, written in a proper spirit and without any desire of fanlt finding but meely to e.lucate public opinion to a sense of the uesthetic in architecture as in engineering, by pointing yout and discussing hefore your members and the public who may be fortunate enongh to atten 1 your sittings, the salient trait; of your eity architecture both public and domestic, its muny beanties and to be eulogised and copied ; its fewer or more unumerous, as the case my be, defeets to be avoided.

What woull Mansard say if it were given to him to be witness to the many erroneous interpretations of what cunstitutes the proper proportions of a so called Mansard roof, and in dome construction why depart so widely from the beantiful proportions of the Invalides at Paris.

I will not say with Rory D'Moor hat there is luck in odd numbers, though I do not at all pretend to deny the fact; but there seems to be some justification for them even in the Scriptures where periods and epochs whether of weal or wore, famine or abundance are never found in innltiples of two but where the odd unit invariably steps in to destroy the monotony, and gentlemen as well in breadth or horizontal magnitude must these proportions be observed as in the vertical.

Try it and vary it as you will, but the tower or the steeple must make some approach towards the one third rule laid down of breadth of portal. Make it much broader and it will not suit, nor can it be mueh narrower, and in the same way as the breadth of spire must conform to that of the church facade, so must the projecting or recessed central portion of any front elevation of a building, that is, fronting towards a street or oven on an inner court, hold sone relationshis, some near approach to this same ratio of 1 and 2 to 3 .

The odd unit is essential in almost every ease. Do we not always have an opening, door or window, gateway or the like exactly on the central axis of a building? does it not eome natural to do so in all cases, and even in a bralge or viaduet, dc we not always seek if possible to have a central span instead of a pier right in the middle of a river or a thoroughfore.

There are defects of spac ${ }^{\text {which may be remedied by optical illnsion. If a facade be neces- }}$ sarily too low, avoid the too oft repeited horizontal lines of pojeeting cornices and beit courses, but rather do the contrary and throw it into vertical lines which have the effect of adding materially to the height. The vertical flutings of a column have this effect where nuy horizontai division of the shafi, any spirally twined ornament around it has the contrary effect.

Nor must we forget to observe the naturbl in all we do. Not only must a post or columu be stout and strong enough to support a structure, but it must appear to be. So when the raterial for instance is iron, it should be known to be sueh and painted in a way to show what it is, iustead of being miade to look like wood or stone and thus create anxiety and doubt as to the fitness of its size, and how often do we not see this elementary rule of ethics outraged by dissiuulating the true material under a coat of imitation stone or marble, where such material reduced to so narrow a basis would be obviously inadequate to sustain the weight or even to be self supporting when so redueed in breadth.

Gentlemen, we want a school of arts or more than one where our youth may be educated to the necessity of all these observances and the thousands of dollars lavished in making good the defects of construction I have allu ted to would ere this have paid for and maintaned many such institutions on a perinanent and continuous footing.

As to the sanitary element, made $u p$ of drainage, light, ventilation and heating, we are now pretty well off for canadian and other periodicals dealing with the subjeet, and I would merely remark on one of these heads : suiting the temperature to the requirements of the onter air, that I do not see why some mode shonld not be devised to add to our confort by cooling the inner air in summer in addition to heating it in during cold weather.

For, in the same may that the colder onter air is heated on its way to the interior of a building by being passed over heaten pipes; in a similar manner conld this onter air, when too warm to snit the human system, be cooled down by passing it over the same pipes then filled withiced water instead of hit, or die etly over a bed or stratum of ice; and how elticient this would proove, is eviden eed by the fact which many maty hive often no:iee I as I have myself, thit when on a warm day a breeze or current of air reaches one in the open after passing over the ordinary ice cart when uncovered as we have them in Quebec, the decrease in temperature or coolness of the breeze is thus most marked and agreable.

And in other ways.can the air be cooled as it always is in summer during rainy weather or even during the merest shower, by following the same process, imitating nature in an artificial sprinkiing kept up during the hotter hours of the day, or better still whet it can be afforded, by artificial rain around the honse or opposite a door or windww (one or more) by conducting a pipe under sufficient ןressure to rise to roof level, so that, perforated along its length like the sprinkler of a watering cart, it may distribute its contents over so much of the eaves as to suit the purposes required.

As to fire proofing I would werely remark that the subject is most pertinent and it is satisfactory 10 see that a very free use is beginning to bs made of iron joists and concrete floors; uor can we reasonably hope for much more than this, with brick partitions instead of wood and lath and phaster ones, as no one will ever ceasent to dwell or even pass his office hours within a building entirely of stone and brick aud iron; no one will put up with any such permanent and contimuons discoufort for the sake of an eventuality which may never occur or so seldom as not to warrant the expeuse of iron floors and stairs and doors and window sashes and their trimmings thus surrounding oue with their chilling intluences.

May be the most portentous question of all, now a days, is that of the possibility of escupe from a building in case of fire, but I shall not allude to it at present as I am about to read a paper on the subject at the next sitting of the Royal Society of Canada of which I am a member and as such bound to contribute my quota towards the Society's yearly volume of transactions.' This paper I shall thercatter have much pleasure in repeating the lecture of before the Canadian Society of Engineers and Architects and only hope yon may abet me, one and all, in my endeavour to have the Legislature step in and enforce the erection of fire proof buildings for hotels and theatres, colleges, asylums, manufactories and the like; that is to the extant I have alluded to of iron joists and concrete filling in between them with brick partition walls and some thoroughly practical and efficient mode of escape in case of fire, a social and humanitarian proposition of the first importance.

Gentlemen at this stage in our country's growth and progress, we do not want to go abroad for hiuts or help. We are now so old as to be self sufficient in the building line et least. Montreal, and I am proad to proclaim it thus publichy, can now manufacture almost anything from a needle to an anchor as the saying is. The several cities and towns of the Dominion have their engneers and architects equal to all and every emergency, and if any one city has not its due proportion of capacity in this respect, it can get it from a sister town of the Dominion or from our kind neighbours of the American Union and not have to cross an ocean for the purpose.

Even at the time we built the Victoria, our Keefers and other engineers were totaly adequate to the task, but of course english capitalists were concerned and some ore hal to be sent out from England for the purpose. Let me hope however gentlemen that there will now be an end to all this kind of thing. America has outstripped Europe in very many things, quite loug ago, and to proof: the 800 ft . span raiway bridge across the Niagara river, the more stupendous bridge of not less than 1600 ft . span between New-York and Brooklyn, our railroads counting their miles by thousands, with the many wide spanned cantilever bridges reaching from cliff to cliff over rivers and ravines innumerable and of untold depth.

Need I in this respect aliude to aught else than our inland systen of water communication. It is not merely equal but superior to any thing in the old world., Our canadian engineers have not been slow to frame their minds, their conceptions and their works on the same vast scale on which our inland waters were presented to them. European engineering nas been dwarfed so to say, on kept down in scale by not having the opportunities we have here of dealing with a mighty river like St-Lawrence.

It is a true saying that occasion makes the man and gentiemen I proclaim it londly and most feerlessly of contradiction : had our Keefers or our Shanlys, our Flemings, Lights, our Kennedys, our Schreibers, Pages, P'erly's, and the like, been consulted or called in to pronounce upon the respec-
tive merits of the plans submitted for our Quebec Halbour works, or any one of them employed to design and superintend the construction of the wor's, we wonld not now have th: tocal failure which we nust chronicle to diy : a so called dock, a tidal and an imer or a wet duck, where, aftur exprnding millions, one of our ocean stenmers will not dare to enter from sheer want of lenghth and brradth and depih enough to move abont in ; with no facilities for deepening, muless as M. I'rrly says, begining at some 40 ft distance from the suroming walls; no lock as there necess rily should hit ie been to, rovide for entrance and exit at any stage of tide or even to make good the differenc: of several feet betweeli two successive tides ; thiss, may be, keeping a steamer other wise ready for its ocean voyige, waiting several days for the tide to rise suffleiently to let it out; or having to fall back on the orher alternative of letting out the water from the dock mintits level is reducel to. that of the tidal dock or river, and thereby may be grouding many of the deeper draught of vessels insille of the enclosure.

Gentlemen, one and all of yon, let me ask you when you visit our poor misgnided city, let me ask you to look down at these so called harbor works from the heights of nur ramparts and I tell you that your heart will bleed at the dire sight of the mosi profonnd stupidity that the world has ever been witness to. There will you see outstreched befure yuu the comparatively vast extent of the estuary or delta of the St. Chutes, and there will yom wonder in amazment and nak yourselves why in common sense this long this costly jetty called the Lamise embankment was not shifted Northwind by many hundred feet thus affording water space within, more th un three times the extent it is.

You will see that had this been done, with the very same length and therefore no inereaseld cost of jetty, a quarter of a million dollars thore would have sufficed to urolong the then exitting break water wharf to meet the jetty northward; while now, not to treble the space as conld then have been done, but only to add to it by an insignificant percentage, some 15 to 20 per cent at the most. M. Perly tell us that the cost of purchasing ihe private property necussary to that end, over three quaters of a million of dullars, togeth r with a million more for a dock wall on the southern sids will not be less than 13 to 2 million dollas: instead of the quarter of a million alluded to.

The shifting of the stone jetty so much further northward as it shonld have been, would have allowed of a series of some 4 to 5 cross wharves or piers 1 unning sonthward or at right angles to the jetty and which, not having to be water tight, could have been built at trifling a ditional expenss and would thus have afforded berths for at least 12 to 20 additional vesspls of the largest size; while the dock as now constructed will hardly admit one of more than 22 ft . draught of water and on the condition thet when once in, it must back ont to effect an exit.

This is what we are subject to, gentlemen, by confiding such morks to outside would be engineers not capable of passing from the nurrow waters of the old country where every thing is on the same small scale, to the broader couceptions nesessary to enlarge their operations in the ratio of the wider waters of the newer work.

Not that there are wanting English, French or other European engineers or American adequate to the task of designing works for Canada : as Stevenson of the Victoria, Brunelle of the Leviathan, Roebling of the suspension bridge, the engineers of the new Forth bridge in Scotland with its two mighty cantiliver spans of 1700 ft . each; but that our then harbonr comissioners dit not know where to look for them nor who to choose and they are the ones to blame, but recrimination is useless now that the thing is donc.

It is then time I say again that we should have men educated here in full view of the difficulties of our climate and whose minds coull mature schemes adequate to the scale of our vast inter-oceanic dominion. This can be done gentlemen first by a tuition in a schooi of art and design and next by their being indentured to a canadian engineer of high standing in active and varied pratice like many of those wo have honored me this evening with their presence.
(Signea)
C. BAILLAIPGE,

M. A.,
F. R.S.C.
City \& Civil Engr., Arct. \&c.

Quebec, May 1887.

